南强小屋 Design By 杰米
首先说明代码只是帮助理解,并未写出梯度下降部分,默认参数已经被固定,不影响理解。代码主要实现RNN原理,只使用numpy库,不可用于GPU加速。
import numpy as np class Rnn(): def __init__(self, input_size, hidden_size, num_layers, bidirectional=False): self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bidirectional = bidirectional def feed(self, x): ''' :param x: [seq, batch_size, embedding] :return: out, hidden ''' # x.shape [sep, batch, feature] # hidden.shape [hidden_size, batch] # Whh0.shape [hidden_size, hidden_size] Wih0.shape [hidden_size, feature] # Whh1.shape [hidden_size, hidden_size] Wih1.size [hidden_size, hidden_size] out = [] x, hidden = np.array(x), [np.zeros((self.hidden_size, x.shape[1])) for i in range(self.num_layers)] Wih = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(1, self.num_layers)] Wih.insert(0, np.random.random((self.hidden_size, x.shape[2]))) Whh = [np.random.random((self.hidden_size, self.hidden_size)) for i in range(self.num_layers)] time = x.shape[0] for i in range(time): hidden[0] = np.tanh((np.dot(Wih[0], np.transpose(x[i, ...], (1, 0))) + np.dot(Whh[0], hidden[0]) )) for i in range(1, self.num_layers): hidden[i] = np.tanh((np.dot(Wih[i], hidden[i-1]) + np.dot(Whh[i], hidden[i]) )) out.append(hidden[self.num_layers-1]) return np.array(out), np.array(hidden) def sigmoid(x): return 1.0/(1.0 + 1.0/np.exp(x)) if __name__ == '__main__': rnn = Rnn(1, 5, 4) input = np.random.random((6, 2, 1)) out, h = rnn.feed(input) print(f'seq is {input.shape[0]}, batch_size is {input.shape[1]} ', 'out.shape ', out.shape, ' h.shape ', h.shape) # print(sigmoid(np.random.random((2, 3)))) # # element-wise multiplication # print(np.array([1, 2])*np.array([2, 1]))
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无numpy实现RNN原理实现的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。