南强小屋 Design By 杰米
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @File : 自实现一个线性回归.py
# @Author: 赵路仓
# @Date : 2020/4/12
# @Desc :
# @Contact : 398333404@qq.com
import os
import tensorflow as tf
def linear_regression():
"""
自实现一个线性回归
:return:
"""
# 命名空间
with tf.variable_scope("prepared_data"):
# 准备数据
x = tf.random_normal(shape=[100, 1], name="Feature")
y_true = tf.matmul(x, [[0.08]]) + 0.7
# x = tf.constant([[1.0], [2.0], [3.0]])
# y_true = tf.constant([[0.78], [0.86], [0.94]])
with tf.variable_scope("create_model"):
# 2.构造函数
# 定义模型变量参数
weights = tf.Variable(initial_value=tf.random_normal(shape=[1, 1], name="Weights"))
bias = tf.Variable(initial_value=tf.random_normal(shape=[1, 1], name="Bias"))
y_predit = tf.matmul(x, weights) + bias
with tf.variable_scope("loss_function"):
# 3.构造损失函数
error = tf.reduce_mean(tf.square(y_predit - y_true))
with tf.variable_scope("optimizer"):
# 4.优化损失
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error)
# 收集变量
tf.summary.scalar("error", error)
tf.summary.histogram("weights", weights)
tf.summary.histogram("bias", bias)
# 合并变量
merged = tf.summary.merge_all()
# 创建saver对象
saver = tf.train.Saver()
# 显式的初始化变量
init = tf.global_variables_initializer()
# 开启会话
with tf.Session() as sess:
# 初始化变量
sess.run(init)
# 创建事件文件
file_writer = tf.summary.FileWriter("E:/tmp/linear", graph=sess.graph)
# print(x.eval())
# print(y_true.eval())
# 查看初始化变量模型参数之后的值
print("训练前模型参数为:权重%f,偏置%f" % (weights.eval(), bias.eval()))
# 开始训练
for i in range(1000):
sess.run(optimizer)
print("第%d次参数为:权重%f,偏置%f,损失%f" % (i + 1, weights.eval(), bias.eval(), error.eval()))
# 运行合并变量操作
summary = sess.run(merged)
# 将每次迭代后的变量写入事件
file_writer.add_summary(summary, i)
# 保存模型
if i == 999:
saver.save(sess, "./tmp/model/my_linear.ckpt")
# # 加载模型
# if os.path.exists("./tmp/model/checkpoint"):
# saver.restore(sess, "./tmp/model/my_linear.ckpt")
print("参数为:权重%f,偏置%f,损失%f" % (weights.eval(), bias.eval(), error.eval()))
pre = [[0.5]]
prediction = tf.matmul(pre, weights) + bias
sess.run(prediction)
print(prediction.eval())
return None
if __name__ == "__main__":
linear_regression()
以上就是python 实现一个简单的线性回归案例的详细内容,更多关于python 实现线性回归的资料请关注其它相关文章!
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无python 实现一个简单的线性回归案例的评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。