南强小屋 Design By 杰米
数据
import numpy as np import pandas as pd data = [{'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]}, {'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}] data = pd.DataFrame(data) data
拆分成行
def split_row(data, column): '''拆分成行 :param data: 原始数据 :param column: 拆分的列名 :type data: pandas.core.frame.DataFrame :type column: str ''' row_len = list(map(len, data[column].values)) rows = [] for i in data.columns: if i == column: row = np.concatenate(data[i].values) else: row = np.repeat(data[i].values, row_len) rows.append(row) return pd.DataFrame(np.dstack(tuple(rows))[0], columns=data.columns) split_row(data, column='Chinese')
拆分成列
from copy import deepcopy def split_col(data, column): '''拆分成列 :param data: 原始数据 :param column: 拆分的列名 :type data: pandas.core.frame.DataFrame :type column: str ''' data = deepcopy(data) max_len = max(list(map(len, data[column].values))) # 最大长度 new_col = data[column].apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[column + str(i)] = j return data split_col(data, column='Chinese')
其他情况
1. 批量处理+不要原列
def split_col(data, columns): '''拆分成列 :param data: 原始数据 :param columns: 拆分的列名 :type data: pandas.core.frame.DataFrame :type columns: list ''' for c in columns: new_col = data.pop(c) max_len = max(list(map(len, new_col.values))) # 最大长度 new_col = new_col.apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[c + str(i)] = j split_col(data, columns=['Chinese','Math']) data
2. 带int和list数据
转成这样:
import numpy as np import pandas as pd data = [{'Name': '小爱', 'Chinese': 70, 'Math': 90}, {'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]}, {'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}] data = pd.DataFrame(data) def split_col(data, columns): '''拆分成列 :param data: 原始数据 :param columns: 拆分的列名 :type data: pandas.core.frame.DataFrame :type columns: list ''' for c in columns: new_col = data.pop(c) max_len = max(list(map(lambda x:len(x) if isinstance(x, list) else 1, new_col.values))) # 最大长度 new_col = new_col.apply(lambda x: x+[None]*(max_len - len(x)) if isinstance(x, list) else [x]+[None]*(max_len - 1)) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[c + str(i)] = j split_col(data, columns=['Chinese','Math']) data
参考文献
Python Pandas list(列表)数据列拆分成多行的方法
10分钟了解Pandas基础知识
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无pandas将list数据拆分成行或列的实现的评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。