南强小屋 Design By 杰米
一、pandas对整列赋值
这个比较正常,一般直接赋值就可以:
x = pd.DataFrame({'A': ['1', '2', '3', None, None], 'B': ['4', '5', '6', '7', None]}) x['A'] = ['10', '11', '12', '13', '14']
二、pandas对非整列赋值
1、用单个值赋值
x = pd.DataFrame({'A': ['1', '2', '3', None, None], 'B': ['4', '5', '6', '7', None]}) index = x['A'].isna() x[index]['A'] = 100
是不是很奇怪,没有赋值成功!!
2、用多个值赋值
x = pd.DataFrame({'A': ['1', '2', '3', None, None], 'B': ['4', '5', '6', '7', None]}) index = x['A'].isna() x[index] = [100, 200]
报错了!!提示说,要用.loc赋值,那我们试一下。
3、.loc赋值
x = pd.DataFrame({'A': ['1', '2', '3', None, None], 'B': ['4', '5', '6', '7', None]}) index = x['A'].isna() x.loc[index, ['A']] = [100, 200]
报错,这是因为shape原因。
x.loc[index, ['A']] = [['100'], ['200']]
三、用数据的另外一列赋值
1、错误方式
x = pd.DataFrame({'A': ['1', '2', '3', '', ''], 'B': ['4', '5', '6', '7', '']}) index = x['A'].isna() x.loc[index, ['A']] = x.loc[index, ['B']]
正确方式
x = pd.DataFrame({'A': ['1', '2', '3', '', ''], 'B': ['4', '5', '6', '7', '']}) index = x['A'].isna() x.loc[index, ['A']] = x.loc[index, ['B']].copy().values.tolist()
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无详解pandas赋值失败问题解决的评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。