1. 扩展Tensor维度
相信刚接触Pytorch的宝宝们,会遇到这样一个问题,输入的数据维度和实验需要维度不一致,输入的可能是2维数据或3维数据,实验需要用到3维或4维数据,那么我们需要扩展这个维度。其实特别简单,只要对数据加一个扩展维度方法就可以了。
1.1torch.unsqueeze(self: Tensor, dim: _int)
torch.unsqueeze(self: Tensor, dim: _int)
参数说明:self:输入的tensor数据,dim:要对哪个维度扩展就输入那个维度的整数,可以输入0,1,2……
1.2Code
第一种方式,输入数据后直接加unsqueeze()
扩展第一维和第二维为1
import torch def reset_unsqueeze1(): data = torch.rand([3, 3]) data1 = data.unsqueeze(dim=0).unsqueeze(dim=1) print("data_size: ", data.shape) print("data: ", data) print("data1_size: ", data1.shape) print("data1: ", data1)
结果显示
第二种方式,用torch.unsqueeze()
import torch def reset_unsqueeze2(): data = torch.rand([3, 3]) data1 = torch.unsqueeze(data, dim=0) print("data_size: ", data.shape) print("data: ", data) print("data1_size: ", data1.shape) print("data1: ", data1)
结果显示
2. 压缩Tensor维度
2.1torch.squeeze(self: Tensor, dim: _int)
这个方法刚好和torch.unsqueeze()方法效果相反,压缩Tensor维度。
2.2 Code
第一种方式,输入数据后直接加squeeze()
import torch def reset_squeeze1(): data = torch.rand([1, 1, 3, 3]) data1 = data.squeeze(dim=0).squeeze(dim=1) print("data_size: ", data.shape) print("data: ", data) print("data1_size: ", data1.shape) print("data1: ", data1)
结果显示
第二种方式,用torch.squeeze()
import torch def reset_squeeze2(): data = torch.rand([1, 1, 3, 3]) data1 = torch.squeeze(data, dim=0) print("data_size: ", data.shape) print("data: ", data) print("data1_size: ", data1.shape) print("data1: ", data1)
结果显示
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。