问题描述:为了把之前的CPU版本的tensorflow卸载,换成GPU版本的tensorflow,经历了一番折腾。
BUG1 Could not install packages due to an EnvironmentError: [WinError 5] 拒绝访问
看指向的路径,感觉是在安装路径的site-packages中已经存在tensorflow文件夹了,但是执行
pip uninstall tensorflow
却提示没有安装,于是手动删除该文件夹,重新安装,此bug修复。
BUG2 ImportError: DLL load failed:找不到指定模块
网上找的很多答案都不符合,后来才发现!!!原来是CUDA装了10.1版本的,目前基本没有看到支持CUDA10.1版本的。
因此,首先卸载了CUDA10.1,在程序卸载界面删除了带版本号的以及Nsight关键字的。然后删除了C:/ProgramFiles/NVIDIA GPU Computing Toolkit
在此之前只安装了VS2013,因此也重新安装了VS2017
重新安装CUDA10.0,检查环境变量有没有修改成功
在这里查看nvcc -V时,无法调用命令,重启计算机即可解决
总的来说,配置下来是
CUDA10.0+cuDNN7.5+VS2017+python3.7+tensorflow1.13
成功从tensorflow CPU版本转成GPU版本
补充知识:Windows下卸载TensorFlow
1、激活tensorflow:activate tensorflow
2、输入:pip uninstall tensorflow
3、Proceed(y/n):y
如果是gpu版本:
1、激活tensorflow:activate tensorflow-gpu
2、输入:pip uninstall tensorflow-gpu
3、Proceed(y/n):y
以上这篇卸载tensorflow-cpu重装tensorflow-gpu操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。