南强小屋 Design By 杰米
问题:如何经过convTransposed1d输出指定大小的特征?
import torch from torch import nn import torch.nn.functional as F conv1 = nn.Conv1d(1, 2, 3, padding=1) conv2 = nn.Conv1d(in_channels=2, out_channels=4, kernel_size=3, padding=1) #转置卷积 dconv1 = nn.ConvTranspose1d(4, 1, kernel_size=3, stride=2, padding=1, output_padding=1) x = torch.randn(16, 1, 8) print(x.size()) x1 = conv1(x) x2 = conv2(x1) print(x2.size()) x3 = dconv1(x2) print(x3.size()) ''' torch.Size([16, 1, 8]) torch.Size([16, 4, 8]) #conv2输出特征图大小 torch.Size([16, 1, 16]) #转置卷积输出特征图大小 '''
#转置卷积 dconv1 = nn.ConvTranspose1d(1, 1, kernel_size=3, stride=3, padding=1, output_padding=1) x = torch.randn(16, 1, 8) print(x.size()) #torch.Size([16, 1, 23]) x3 = dconv1(x) print(x3.size()) #torch.Size([16, 1, 23])
下面两图为演示conv1d,在padding和不padding下的输出特征图大小
不带padding
带padding
补充知识:判断pytorch是否支持GPU加速
如下所示:
print torch.cuda.is_available()
以上这篇pytorch 计算ConvTranspose1d输出特征大小方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无pytorch 计算ConvTranspose1d输出特征大小方式的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。