南强小屋 Design By 杰米
Python在用GPU跑模型的时候最好开多进程,因为很明显这种任务就是计算密集型的。
用进程池好管理,但是tensorflow默认情况会最大占用显存,尽管该任务并不需要这么多,因此我们可以设置显存的按需获取,这样程序就不会死掉了。
1. 按比例预留:
tf_config = tensorflow.ConfigProto() tf_config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 分配50% session = tensorflow.Session(config=tf_config)
2. 或者干脆自适应然后自动增长:
tf_config = tensorflow.ConfigProto() tf_config.gpu_options.allow_growth = True # 自适应 session = tensorflow.Session(config=tf_config)
以上这篇tensorflow 限制显存大小的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无tensorflow 限制显存大小的实现的评论...