南强小屋 Design By 杰米
使用model.named_parameters()可以轻松搞定,
model.cuda() # ######################################## Froze some layers to fine-turn the model ######################## for name, param in model.named_parameters(): # 带有参数名的模型的各个层包含的参数遍历 if 'out' or 'merge' or 'before_regress' in name: # 判断参数名字符串中是否包含某些关键字 continue param.requires_grad = False # ############################################################################################################# optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=opt.learning_rate * args.world_size, momentum=0.9, weight_decay=5e-4)
以上这篇Pytorch根据layers的name冻结训练方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无Pytorch根据layers的name冻结训练方式的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。