南强小屋 Design By 杰米
一,对应点相乘,x.mul(y) ,即点乘操作,点乘不求和操作,又可以叫作Hadamard product;点乘再求和,即为卷积
data = [[1,2], [3,4], [5, 6]] tensor = torch.FloatTensor(data) tensor Out[27]: tensor([[ 1., 2.], [ 3., 4.], [ 5., 6.]]) tensor.mul(tensor) Out[28]: tensor([[ 1., 4.], [ 9., 16.], [ 25., 36.]])
二,矩阵相乘,x.mm(y) , 矩阵大小需满足: (i, n)x(n, j)
tensor Out[31]: tensor([[ 1., 2.], [ 3., 4.], [ 5., 6.]]) tensor.mm(tensor.t()) # t()是转置 Out[30]: tensor([[ 5., 11., 17.], [ 11., 25., 39.], [ 17., 39., 61.]])
以上这篇(标题)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无PyTorch 对应点相乘、矩阵相乘实例的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。