南强小屋 Design By 杰米

一,对应点相乘,x.mul(y) ,即点乘操作,点乘不求和操作,又可以叫作Hadamard product;点乘再求和,即为卷积

data = [[1,2], [3,4], [5, 6]]
tensor = torch.FloatTensor(data)
 
tensor
Out[27]: 
tensor([[ 1., 2.],
    [ 3., 4.],
    [ 5., 6.]])
 
tensor.mul(tensor)
Out[28]: 
tensor([[ 1.,  4.],
    [ 9., 16.],
    [ 25., 36.]])

二,矩阵相乘,x.mm(y) , 矩阵大小需满足: (i, n)x(n, j)

tensor
Out[31]: 
tensor([[ 1., 2.],
    [ 3., 4.],
    [ 5., 6.]])
 
tensor.mm(tensor.t()) # t()是转置
Out[30]: 
tensor([[ 5., 11., 17.],
    [ 11., 25., 39.],
    [ 17., 39., 61.]])

以上这篇(标题)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
PyTorch,对应点,相乘,矩阵

南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米

评论“PyTorch 对应点相乘、矩阵相乘实例”

暂无PyTorch 对应点相乘、矩阵相乘实例的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。