1、Python数据存储(压缩)
(1)numpy.save , numpy.savez , scipy.io.savemat
numpy和scipy内建的数据存储方式。
(2)cPickle + gzip
cPickle是pickle内建的数据存储方式,gzip是常用的文件压缩模块。
(3)h5py
h5py是对HDF5文件格式进行读写的python包,关于h5py更多介绍与安装,参考官方网站
关于HDF5,参考官方网站。:
一个HDF5文件就是一个由两种基本数据对象(groups and datasets)存放多种科学数据的容器:
HDF5 dataset: 数据元素的一个多维数组以及支持元数据(metadata); HDF5 group: 包含0个或多个HDF5对象以及支持元数据(metadata)的一个群组结构;
总之,dataset是类似于数组的数据集,而group是类似文件夹一样的容器,存放dataset和其他group;group和dataset在h5py中的使用有点类似于词典和Numpy中数组的用法。
h5py的优势:速度快、压缩效率高,总之,numpy.savez和cPickle存储work或不work的都可以试一试h5py!
2、h5py读取和存储数据示例
import h5py X= np.random.rand(100, 1000, 1000).astype('float32') y = np.random.rand(1, 1000, 1000).astype('float32') # Create a new file f = h5py.File('data.h5', 'w') f.create_dataset('X_train', data=X) f.create_dataset('y_train', data=y) f.close() # Load hdf5 dataset f = h5py.File('data.h5', 'r') X = f['X_train'] Y = f['y_train'] f.close()
详细使用方法,参考官网。
以上这篇Python数据存储之 h5py详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
Python,数据存储,h5py
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。