南强小屋 Design By 杰米
这篇文章主要介绍了python多进程并发demo实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
前言
下午需要简单处理一份数据,就直接随手写脚本处理了,但发现效率太低,速度太慢,就改成多进程了;
程序涉及计算、文件读写,鉴于计算内容挺多的,就用多进程了(计算密集)。
代码
import pandas as pd from pathlib import Path from concurrent.futures import ProcessPoolExecutor parse_path = '/data1/v-gazh/CRSP/dsf_full_fields/parse' source_path = '/data1/v-gazh/CRSP/dsf_full_fields/2th_split' # 目录中有3.3W个csv文件,串行的话,效率大打折扣 def parseData(): source_path_list = list(Path(source_path).glob('*.csv')) multi_process = ProcessPoolExecutor(max_workers=20) multi_results = multi_process.map(func, source_path_list) def func(p): source_p = str(p) parse_p = str(p).replace('2th_split', 'parse') df = pd.read_csv(source_p) df['date'] = pd.to_datetime(df['date'].astype(str)).dt.date df.sort_values(['date'], inplace=True) # 处理close为负的值(abs),添加status标识 df['is_close'] = df['PRC'].map(lambda x: 0 if x < 0 or pd.isna(x) else 1) df['PRC'] = df['PRC'].abs() df.rename(columns={'CFACPR': 'factor'}, inplace=True) df['adj_low'] = df['BIDLO'] * df['factor'] df['adj_high'] = df['ASKHI'] * df['factor'] df['adj_close'] = df['PRC'] * df['factor'] df['adj_open'] = df['OPENPRC'] * df['factor'] df['adj_volume'] = df['VOL'] / df['factor'] # calc change df['change'] = df['adj_close'].diff(1) / df['adj_close'].shift(1) df.drop_duplicates(inplace=True) df.to_csv(parse_p, index=False) parseData()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,多进程,并发
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无python多进程并发demo实例解析的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。