南强小屋 Design By 杰米
使用Numpy(下面简称np)中的sum函数对某一维度求和时,由于该维度会在求和后变成一个数,所以所得结果的这一维度为空。
比如下面的例子:
a = np.array([[1,2,3],[4,5,6]]) b = np.sum(a,axis=1) print(b.shape) # (2,)
所以,对于一个shape为(2,3)的数组,在默认情况下使用np.sum函数求和后得到的结果shape是 (2,),如果我们想得到的是(2,1)的shape怎么办?比如Ng的深度学习编程练习中Course 1 Assignment 4就要求这样。使用reshape函数当然可以,只是没有必要,太麻烦了一点不优雅。我们可以使用通过设置keepdims参数实现,还是这个例子:
a = np.array([[1,2,3],[4,5,6]]) b = np.sum(a,axis=1,keepdims=True) print(b.shape) # (2,1)
(2,1)和(2,)的shape之间不同参见 What's the difference between (N,) and (N,1) in Numpy"htmlcode">
a = np.ones((5,)) b = np.ones((5,1)) print(a) # [1. 1. 1. 1. 1.] print(b) # [[1.] # [1.] # [1.] # [1.] # [1.]]
以上这篇解决Numpy中sum函数求和结果维度的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
Numpy,sum,求和,维度
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无解决Numpy中sum函数求和结果维度的问题的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。