python生成器
python中生成器是迭代器的一种,使用yield返回函数值。每次调用yield会暂停,而可以使用next()函数和send()函数可以恢复生成器。
这里可以参考Python函数式编程指南:对生成器全面讲解
注意到yield是个表达式而不仅仅是个语句,所以可以使用x = yield r 这样的语法。
这个知识点在协程中需要使用。协程的概念指的是在一个线程内,一个程序中断去执行另一个程序,有点类似于CPU中断。这样减少了切换线程带来的负担,同时不需要多线程中的锁机制,因为不存在同时写的问题。
python使用生成器来实现协程,下面看一个python协程应用于生产者消费者问题的例子
def consumer(): r = 'yield' while True: #当下边语句执行时,先执行yield r,然后consumer暂停,此时赋值运算还未进行 #等到producer调用send()时,send()的参数作为yield r表达式的值赋给等号左边 n = yield r #yield表达式可以接收send()发出的参数 if not n: return print('[CONSUMER] Consuming %s...' % n) r = '200 OK' def produce(c): c.send(None) n = 0 while n < 5: n = n + 1 print('[PRODUCER] Producing %s...' % n) r = c.send(n) #调用consumer生成器 print('[PRODUCER] Consumer return: %s' % r) c.close() c = consumer() produce(c)
注意到send需要先调用send(None),因为只有生成器是暂停状态才可以接收send的参数。
为了理解send()恢复生成器的过程,我们可以再看一个例子:
def gen(): a = yield 1 print('yield a % s' % a) b = yield 2 print('yield b % s' % b) c = yield 3 print('yield c % s' % c) r = gen() x = next(r) print('next x %s' % x) y = r.send(10) print('next y %s' %y) z = next(r) print('next z %s' % z)
可以看到实际上y=r.send(10) 的参数10是赋给了a。整个运行过程即执行x=next(r) 之后,gen()执行了yield 1 然后暂停,没有进行对a的赋值。但再调用y=r.send(10) 时赋值过程继续,并把10赋给了a.
以上这篇基于Python中的yield表达式介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
Python,yield,表达式
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。