南强小屋 Design By 杰米

numpy.random.shuffle

在做将caffe模型和预训练的参数转化为tensorflow的模型和预训练的参数,以便微调,遇到如下函数:

def gen_data(source):
  while True:
    indices = range(len(source.images)) # indices = the number of images in the source data set
    random.shuffle(indices)
    for i in indices:
      image = np.reshape(source.images[i], (28, 28, 1))
      label = source.labels[i]
      yield image, label

之前卑鄙陋寡闻,不知道这个用法,按照字面上的意思是打乱,那么这里就应该是让训练数据集中的数据打乱顺序,然后一个挨着一个地(for i in indices)生成训练数据对。下面就从docs.scipy.org中查到的random.shuffle的用法:

numpy.random.shuffle(x)

Modify a sequence in-place by shuffling its contents.

Parameters:

x : array_like

The array or list to be shuffled.

Returns:

None

举例

python>
> arr = np.arange(10)
> np.random.shuffle(arr)
> arr
[1 7 5 2 9 4 3 6 0 8]

This function only shuffles the array along the first index of a multi-dimensional array(多维矩阵中,只对第一维(行)做打乱顺序操作):

python>
> arr = np.arange(9).reshape((3, 3))
> np.random.shuffle(arr)
> arr
array([[3, 4, 5],
    [6, 7, 8],
    [0, 1, 2]])This function only shuffles the array along the first index of a multi-dimensional array:

参考:

[1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html#numpy-random-shuffle

[2] https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist/finetune_mnist.py

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
numpy.random.shuffle打乱顺序函数,numpy.random.shuffle打乱

南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米

评论“numpy.random.shuffle打乱顺序函数的实现”

暂无numpy.random.shuffle打乱顺序函数的实现的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。