南强小屋 Design By 杰米

pytorch中我们有时候可能需要设定某些变量是参与训练的,这时候就需要查看哪些是可训练参数,以确定这些设置是成功的。

pytorch中model.parameters()函数定义如下:

  def parameters(self):
    r"""Returns an iterator over module parameters.

    This is typically passed to an optimizer.

    Yields:
      Parameter: module parameter

    Example::

      > for param in model.parameters():
      >   print(type(param.data), param.size())
      <class 'torch.FloatTensor'> (20L,)
      <class 'torch.FloatTensor'> (20L, 1L, 5L, 5L)

    """
    for name, param in self.named_parameters():
      yield param

所以,我们可以遍历named_parameters()中的所有的参数,只打印那些param.requires_grad=True的变量。具体实现代码如下所示:

for name, param in model.named_parameters():
  if param.requires_grad:
    print(name)

这样打印出的结果就是模型中所有的可训练参数列表!

以上这篇在pytorch中查看可训练参数的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
pytorch,查看,训练,参数

南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米

评论“在pytorch中查看可训练参数的例子”

暂无在pytorch中查看可训练参数的例子的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。