数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是三种常用的归一化方法:
min-max标准化(Min-Max Normalization)
也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 , 1]之间。转换函数如下:
其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。
min-max标准化python代码如下:
import numpy as np arr = np.asarray([0, 10, 50, 80, 100]) for x in arr: x = float(x - np.min(arr))/(np.max(arr)- np.min(arr)) print x # output # 0.0 # 0.1 # 0.5 # 0.8 # 1.0
使用这种方法的目的包括:
1、对于方差非常小的属性可以增强其稳定性;
2、维持稀疏矩阵中为0的条目。
下面将数据缩至0-1之间,采用MinMaxScaler函数
from sklearn import preprocessing import numpy as np X = np.array([[ 1., -1., 2.], [ 2., 0., 0.], [ 0., 1., -1.]]) min_max_scaler = preprocessing.MinMaxScaler() X_minMax = min_max_scaler.fit_transform(X)
最后输出:
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]])
测试用例:
注意:这些变换都是对列进行处理。
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0)) X_minmax=X_std/(X.max(axis=0)-X.min(axis=0))+X.min(axis=0))
Z-score标准化方法
也称为均值归一化(mean normaliztion), 给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1。转化函数为:
其中 μμ 为所有样本数据的均值,σσ为所有样本数据的标准差。
import numpy as np arr = np.asarray([0, 10, 50, 80, 100]) for x in arr: x = float(x - arr.mean())/arr.std() print x # output # -1.24101045599 # -0.982466610991 # 0.0517087689995 # 0.827340303992 # 1.34442799399
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
python,数据归一化
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。