南强小屋 Design By 杰米

本文实例讲述了Python使用sklearn库实现的各种分类算法简单应用。分享给大家供大家参考,具体如下:

KNN

from sklearn.neighbors import KNeighborsClassifier
import numpy as np
def KNN(X,y,XX):#X,y 分别为训练数据集的数据和标签,XX为测试数据
  model = KNeighborsClassifier(n_neighbors=10)#默认为5
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

SVM

from sklearn.svm import SVC
def SVM(X,y,XX):
  model = SVC(c=5.0)
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

SVM Classifier using cross validation

def svm_cross_validation(train_x, train_y):
  from sklearn.grid_search import GridSearchCV
  from sklearn.svm import SVC
  model = SVC(kernel='rbf', probability=True)
  param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
  grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
  grid_search.fit(train_x, train_y)
  best_parameters = grid_search.best_estimator_.get_params()
  for para, val in list(best_parameters.items()):
    print(para, val)
  model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
  model.fit(train_x, train_y)
  return model

LR

from sklearn.linear_model import LogisticRegression
def LR(X,y,XX):
  model = LogisticRegression()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

决策树(CART)

from sklearn.tree import DecisionTreeClassifier
def CTRA(X,y,XX):
  model = DecisionTreeClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

随机森林

from sklearn.ensemble import RandomForestClassifier
def CTRA(X,y,XX):
  model = RandomForestClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

GBDT(Gradient Boosting Decision Tree)

from sklearn.ensemble import GradientBoostingClassifier
def CTRA(X,y,XX):
  model = GradientBoostingClassifier()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted

朴素贝叶斯:一个是基于高斯分布求概率,一个是基于多项式分布求概率,一个是基于伯努利分布求概率。

from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
def GNB(X,y,XX):
  model =GaussianNB()
  model.fit(X,y)
  predicted = model.predict(XX)
  return predicted
def MNB(X,y,XX):
  model = MultinomialNB()
  model.fit(X,y)
  predicted = model.predict(XX
  return predicted
def BNB(X,y,XX):
  model = BernoulliNB()
  model.fit(X,y)
  predicted = model.predict(XX
  return predicted

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

标签:
Python,sklearn库,分类算法

南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米

评论“Python使用sklearn库实现的各种分类算法简单应用小结”

暂无Python使用sklearn库实现的各种分类算法简单应用小结的评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。