南强小屋 Design By 杰米
测试函数主要是用来评估优化算法特性的,这里我用python3绘制了部分测试函数的图像。具体的测试函数可以结合维基百科来了解。想要显示某个测试函数的图片把代码结尾对应的注释去掉即可,具体代码如下:
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def draw_pic(X, Y, Z, z_max, title, z_min=0): fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot) # ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot) ax.set_zlim(z_min, z_max) ax.set_title(title) # plt.savefig("./myProject/Algorithm/pic/%s.png" % title) # 保存图片 plt.show() def get_X_AND_Y(X_min, X_max, Y_min, Y_max): X = np.arange(X_min, X_max, 0.1) Y = np.arange(Y_min, Y_max, 0.1) X, Y = np.meshgrid(X, Y) return X, Y # rastrigin测试函数 def Rastrigin(X_min = -5.52, X_max = 5.12, Y_min = -5.12, Y_max = 5.12): A = 10 X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max) Z = 2 * A + X ** 2 - A * np.cos(2 * np.pi * X) + Y ** 2 - A * np.cos(2 * np.pi * Y) return X, Y, Z, 100, "Rastrigin function" # Ackley测试函数 def Ackley(X_min = -5, X_max = 5, Y_min = -5, Y_max = 5): X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max) Z = -20 * np.exp(-0.2 * np.sqrt(0.5 * (X**2 + Y**2))) - np.exp(0.5 * (np.cos(2 * np.pi * X) + np.cos(2 * np.pi * Y))) + np.e + 20 return X, Y, Z, 15, "Ackley function" # Sphere测试函数 def Sphere(X_min = -3, X_max = 3, Y_min = -3, Y_max = 3): X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max) Z = X**2 + Y**2 return X, Y, Z, 20, "Sphere function" # beale测试函数 def Beale(X_min = -4.5, X_max = 4.5, Y_min = -4.5, Y_max = 4.5): X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max) Z = np.power(1.5 - X + X * Y, 2) + np.power(2.25 - X + X * (Y ** 2), 2) + np.power(2.625 - X + X * (Y ** 3), 2) return X, Y, Z, 150000, "Beale function" # Booth测试函数 def Booth(X_min = -10, X_max = 10, Y_min = -10, Y_max = 10): X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max) Z = np.power(X + 2*Y - 7, 2) + np.power(2 * X + Y - 5, 2) return X, Y, Z, 2500, "Booth function" # Bukin测试函数 def Bukin(X_min = -15, X_max = -5, Y_min = -3, Y_max = 3): X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max) Z = 100 * np.sqrt(np.abs(Y - 0.01 * X**2)) + 0.01 * np.abs(X + 10) return X, Y, Z, 200, "Bukin function" # Three-hump camel测试函数 def three_humpCamel(X_min = -5, X_max = 5, Y_min = -5, Y_max = 5): X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max) Z = 2 * X**2 - 1.05 * X**4 + (1/6) * X**6 + X*Y + Y*2 return X, Y, Z, 2000, "three-hump camel function" # Hölder table测试函数 def Holder_table(X_min = -10, X_max = 10, Y_min = -10, Y_max = 10): X, Y = get_X_AND_Y(X_min, X_max, Y_min, Y_max) Z = -np.abs(np.sin(X) * np.cos(Y) * np.exp(np.abs(1 - np.sqrt(X**2 + Y**2)/np.pi))) return X, Y, Z, 0, "Hölder table function", -20 z_min = None # X, Y, Z, z_max, title = Rastrigin() # X, Y, Z, z_max, title = Ackley() # X, Y, Z, z_max, title = Sphere() # X, Y, Z, z_max, title = Beale() X, Y, Z, z_max, title = Booth() # X, Y, Z, z_max, title = Bukin() # X, Y, Z, z_max, title = three_humpCamel() # X, Y, Z, z_max, title, z_min = Holder_table() draw_pic(X, Y, Z, z_max, title, z_min)
以下是上述代码绘制的测试函数的图像:
感觉图像的颜色还不是很好看,等之后优化了来改
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,测试函数
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无python绘制评估优化算法性能的测试函数的评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。