本人在学习使用Python和plotly处理数据时,经过两个小时艰难试错,终于完成了散点图和折线图的实例。在使用过程中遇到一个大坑,因为官方给出的案例是用在线存储的,所以需要安装jupyter(也就是ipython)才能使用notebook来处理生成的文件,一开始我没太懂iplot和plot之间的差异,导致浪费了很多时间。
重要提示:最新的jupyter不支持Python3.2及以下版本。
最后我只能继续采用本地文件的形式来解决这个问题了。下面放出我的测试代码,被注释掉的是官方给出的代码以及离线存储的代码。应该是最新版的Python的方案。
#!/usr/bin/python # coding=utf-8 import plotly.plotly import random from plotly.graph_objs import * import plotly.graph_objs as abc # 必须 import numpy as np def sayHello(): N=100 xx = []; for i in range(20): xx.append(i) y0 = []; for i in range(20): y0.append(random.randint(0, 10)) y1 = []; for i in range(20): y1.append(random.randint(10, 20)) y2 = []; for i in range(20): y2.append(random.randint(20, 30)) #xx = np.linspace(0, 1, N) #y0 = np.random.randn(N) + 5 #y1 = np.random.randn(N) #y2 = np.random.randn(N) - 5 data_1 = abc.Scatter( x=xx, y=y0, name='test1', mode='markers' ) date_2 = abc.Scatter( x=xx, y=y1, name='test2', mode="lines" ) date_3 = abc.Scatter( x=xx, y=y2, name='test3', mode="lines+markers" ) ''' N = 1000 random_x = np.random.randn(N) random_y = np.random.randn(N) # Create a trace trace = abc.Scatter( x=random_x, y=random_y, mode='markers' ) data1 = [trace] ''' data1 = Data([data_1, date_2,date_3]) plotly.offline.plot(data1) #plotly.offline.iplot(data1,filename='test01') if __name__ == "__main__": sayHello()
下面是我最终结果的截图:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。