本文实例讲述了Python mutiprocessing多线程池pool操作。分享给大家供大家参考,具体如下:
python — mutiprocessing 多线程 pool
脚本代码:
root@72132server:~/python/multiprocess# ls multiprocess_pool.py multprocess.py root@72132server:~/python/multiprocess# cat multiprocess_pool.py #!/usr/bin/python # --*-- coding:utf-8 --*-- import multiprocessing import sys,os,time result = []#把运行的进程池放入,空的列表 def run(msg):#定义正在处理进程编号数的函数功能 print 'threading number:%s %s' %(msg,os.getpid())#打印正在处理的进程编号数与对应的系统进程号 time.sleep(2) p = multiprocessing.Pool(processes = 25)#绑定事例,同时执行25个线程 for i in range(100): result.append(p.apply_async(run,('%s' %i,)))#异步传输正在运行的进程数字号码 p.close()#关闭正在运行的25个进程 #p.join() for res in result:#获取运行结果 res.get(timeout=5) root@72132server:~/python/multiprocess#
运行情况:
1)脚本运行
root@72132server:~/python/multiprocess# python multiprocess_pool.py threading number:0 27912 threading number:1 27915 threading number:2 27913 threading number:3 27916 threading number:4 27917 threading number:5 27918 threading number:6 27919 threading number:7 27920 threading number:8 27922 threading number:9 27923 threading number:10 27924 threading number:11 27925 threading number:12 27926 threading number:13 27927 threading number:14 27928 threading number:15 27914 threading number:16 27929 threading number:17 27921 threading number:18 27930 threading number:19 27931 threading number:20 27932 threading number:21 27934 threading number:22 27935 threading number:23 27936 threading number:24 27933 threading number:25 27912 threading number:26 27915 threading number:27 27917 threading number:28 27918 threading number:29 27916 threading number:30 27913 threading number:31 27922 threading number:32 27919 threading number:33 27920 threading number:34 27923 threading number:35 27924 threading number:36 27925 threading number:37 27927 threading number:38 27921 threading number:39 27930 threading number:40 27932 threading number:41 27934 threading number:42 27935 threading number:43 27926 threading number:44 27931 threading number:45 27928 threading number:46 27929 threading number:47 27914 threading number:48 27933 threading number:49 27936 threading number:50 27912 threading number:51 27915
2)进程查看(25个进程同时运行)
root@72132server:~/python/multiprocess# ps -ef | grep multi root 27905 23930 0 22:39 pts/3 00:00:00 grep multi root@72132server:~/python/multiprocess# ps -ef | grep multi root 27911 20609 1 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27912 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27913 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27914 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27915 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27916 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27917 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27918 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27919 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27920 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27921 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27922 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27923 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27924 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27925 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27926 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27927 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27928 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27929 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27930 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27931 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27932 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27933 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27934 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27935 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27936 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27941 23930 0 22:39 pts/3 00:00:00 grep multi root@72132server:~/python/multiprocess# ps -ef | grep multi root 27911 20609 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27912 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27913 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27914 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27915 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27916 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27917 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27918 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27919 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27920 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27921 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27922 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27923 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27924 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27925 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27926 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27927 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27928 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27929 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27930 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27931 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27932 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27933 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27934 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27935 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27936 27911 0 22:39 pts/1 00:00:00 python multiprocess_pool.py root 27943 23930 0 22:39 pts/3 00:00:00 grep multi root@72132server:~/python/multiprocess#
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。