南强小屋 Design By 杰米
如下所示:
#coding:utf8
import pandas as pd
import numpy as np
from pandas import Series,DataFrame
# 如果有id列,则需先删除id列再进行对应操作,最后再补上
# 统计的时候不需要用到id列,删除的时候需要考虑
# delete row
def row_del(df, num_percent, label_len = 0):
#print list(df.count(axis=1))
col_num = len(list(list(df.values)[1])) - label_len # -1为考虑带标签
if col_num<0:
print 'Error'
#print int(col_num*num_percent)
return df.dropna(axis=0, how='any', thresh=int(col_num*num_percent))
# 如果有字符串类型,则报错
# data normalization -1 to 1
# label_col: 不需考虑的类标,可以为字符串或字符串列表
# 数值类型统一到float64
def data_normalization(df, label_col = []):
lab_len = len(label_col)
print label_col
if lab_len>0:
df_temp = df.drop(label_col, axis = 1)
df_lab = df[label_col]
print df_lab
else:
df_temp = df
max_val = list(df_temp.max(axis=0))
min_val = list(df_temp.min(axis=0))
mean_val = list((df_temp.max(axis=0) + df_temp.min(axis=0)) / 2)
nan_values = df_temp.isnull().values
row_num = len(list(df_temp.values))
col_num = len(list(df_temp.values)[1])
for rn in range(row_num):
#data_values_r = list(data_values[rn])
nan_values_r = list(nan_values[rn])
for cn in range(col_num):
if nan_values_r[cn] == False:
df_temp.values[rn][cn] = 2 * (df_temp.values[rn][cn] - mean_val[cn])/(max_val[cn] - min_val[cn])
else:
print 'Wrong'
for index,lab in enumerate(label_col):
df_temp.insert(index, lab, df_lab[lab])
return df_temp
# 创建一个带有缺失值的数据框:
df = pd.DataFrame(np.random.randn(5,3), index=list('abcde'), columns=['one','two','three'])
df.ix[1,:-1]=np.nan
df.ix[1:-1,2]=np.nan
df.ix[0,0]=int(1)
df.ix[2,2]='abc'
# 查看一下数据内容:
print '\ndf1'
print df
print row_del(df, 0.8)
print '-------------------------'
df = data_normalization(df, ['two', 'three'])
print df
print df.dtypes
print (type(df.ix[2,2]))
以上这篇pandas 数据归一化以及行删除例程的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas,数据归一化
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无pandas 数据归一化以及行删除例程的方法的评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。