这篇文章给出了如何绘制中国人口密度图,但是运行存在一些问题,我在一些地方进行了修改。
本人使用的IDE是anaconda,因此事先在anaconda prompt 中安装Basemap包
conda install Basemap
新建文档,导入需要的包
import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from matplotlib.patches import Polygon from matplotlib.colors import rgb2hex import numpy as np import pandas as pd
Basemap中不包括中国省界,需要在下面网站下载中国省界,点击Shapefile下载。
生成中国大陆省界图片。
plt.figure(figsize=(16,8))
m = Basemap(
llcrnrlon=77,
llcrnrlat=14,
urcrnrlon=140,
urcrnrlat=51,
projection='lcc',
lat_1=33,
lat_2=45,
lon_0=100
)
m.drawcountries(linewidth=1.5)
m.drawcoastlines()
m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)
去国家统计局网站下载人口各省,只需保留地区和总人口即可,保存为csv格式并改名为pop.csv。
读取数据,储存为dataframe格式,删去地名之中的空格,并设置地名为dataframe的index。
df = pd.read_csv('pop.csv')
new_index_list = []
for i in df["地区"]:
i = i.replace(" ","")
new_index_list.append(i)
new_index = {"region": new_index_list}
new_index = pd.DataFrame(new_index)
df = pd.concat([df,new_index], axis=1)
df = df.drop(["地区"], axis=1)
df.set_index("region", inplace=True)
将Basemap中的地区与我们下载的csv中的人口数据对应起来,建立字典。注意,Basemap中的地名与csv文件中的地名并不完全一样,需要进行一些处理。
provinces = m.states_info
statenames=[]
colors = {}
cmap = plt.cm.YlOrRd
vmax = 100000000
vmin = 3000000
for each_province in provinces:
province_name = each_province['NL_NAME_1']
p = province_name.split('|')
if len(p) > 1:
s = p[1]
else:
s = p[0]
s = s[:2]
if s == '黑龍':
s = '黑龙江'
if s == '内蒙':
s = '内蒙古'
statenames.append(s)
pop = df['人口数'][s]
colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]
最后画出图片即可
ax = plt.gca() for nshape, seg in enumerate(m.states): color = rgb2hex(colors[statenames[nshape]]) poly = Polygon(seg, facecolor=color, edgecolor=color) ax.add_patch(poly) plt.show()
完整代码如下
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.colors import rgb2hex
import numpy as np
import pandas as pd
plt.figure(figsize=(16,8))
m = Basemap(
llcrnrlon=77,
llcrnrlat=14,
urcrnrlon=140,
urcrnrlat=51,
projection='lcc',
lat_1=33,
lat_2=45,
lon_0=100
)
m.drawcountries(linewidth=1.5)
m.drawcoastlines()
m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)
df = pd.read_csv('pop.csv')
new_index_list = []
for i in df["地区"]:
i = i.replace(" ","")
new_index_list.append(i)
new_index = {"region": new_index_list}
new_index = pd.DataFrame(new_index)
df = pd.concat([df,new_index], axis=1)
df = df.drop(["地区"], axis=1)
df.set_index("region", inplace=True)
provinces = m.states_info
statenames=[]
colors = {}
cmap = plt.cm.YlOrRd
vmax = 100000000
vmin = 3000000
for each_province in provinces:
province_name = each_province['NL_NAME_1']
p = province_name.split('|')
if len(p) > 1:
s = p[1]
else:
s = p[0]
s = s[:2]
if s == '黑龍':
s = '黑龙江'
if s == '内蒙':
s = '内蒙古'
statenames.append(s)
pop = df['人口数'][s]
colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]
ax = plt.gca()
for nshape, seg in enumerate(m.states):
color = rgb2hex(colors[statenames[nshape]])
poly = Polygon(seg, facecolor=color, edgecolor=color)
ax.add_patch(poly)
plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
