南强小屋 Design By 杰米
场景如下:
现在有一个dataframe,其中一列为score,值从0-100,
df:
score
98
88
37
68
86
33
现在需要增加一列level,给这些分数分类,90分以上为A,60-90为B,60以下为C。
常用的方法肯定是使用for循环,对每一行进行处理。
import pandas as pd list = [98,88,37,68,86,33] df = pd.DataFrame(list, columns=['score']) # convert list to dataframe df['level'] = '' # add a column def judgeLevel(df): for i in range(len(df)): if df.score.ix[i] < 60: df.level.ix[i] = 'C' elif df.score.ix[i] > 90: df.level.ix[i] = 'A' else: df.level.ix[i] = 'B' return df df = judgeLevel(df)
还有一种方法,是使用python的匿名函数:lambda函数
import pandas as pd list = [98,88,37,68,86,33] df = pd.DataFrame(list, columns=['score']) df['level'] = '' # add a column def judgeLevel(df): if df['score'] < 60: return 'C' elif df['score'] > 90: return 'A' else: return 'B' df['level'] = df.apply(lambda r: judgeLevel(r), axis=1)
至于如何取舍,就由各位自行决定了,多学一点总不是坏处,对吧?
以上这篇python 用lambda函数替换for循环的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无python 用lambda函数替换for循环的方法的评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。