OpenCV的人脸检测功能在一般场合还是不错的。而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码。
写代码之前应该先安装python-opencv:
复制代码 代码如下:
$ sudo apt-get install python-opencv
具体原理就不多说了,可以参考一下这篇文章。直接上源码。
复制代码 代码如下:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
# face_detect.py
# Face Detection using OpenCV. Based on sample code from:
# http://python.pastebin.com/m76db1d6b
# Usage: python face_detect.py <image_file>
import sys, os
from opencv.cv import *
from opencv.highgui import *
from PIL import Image, ImageDraw
from math import sqrt
def detectObjects(image):
"""Converts an image to grayscale and prints the locations of any faces found"""
grayscale = cvCreateImage(cvSize(image.width, image.height), 8, 1)
cvCvtColor(image, grayscale, CV_BGR2GRAY)
storage = cvCreateMemStorage(0)
cvClearMemStorage(storage)
cvEqualizeHist(grayscale, grayscale)
cascade = cvLoadHaarClassifierCascade(
'/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml',
cvSize(1,1))
faces = cvHaarDetectObjects(grayscale, cascade, storage, 1.1, 2,
CV_HAAR_DO_CANNY_PRUNING, cvSize(20,20))
result = []
for f in faces:
result.append((f.x, f.y, f.x+f.width, f.y+f.height))
return result
def grayscale(r, g, b):
return int(r * .3 + g * .59 + b * .11)
def process(infile, outfile):
image = cvLoadImage(infile);
if image:
faces = detectObjects(image)
im = Image.open(infile)
if faces:
draw = ImageDraw.Draw(im)
for f in faces:
draw.rectangle(f, outline=(255, 0, 255))
im.save(outfile, "JPEG", quality=100)
else:
print "Error: cannot detect faces on %s" % infile
if __name__ == "__main__":
process('input.jpg', 'output.jpg')
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。