南强小屋 Design By 杰米
复制代码 代码如下:
/*
--注意:准备数据(可略过,非常耗时)
CREATE TABLE CHECK1_T1
(
ID INT,
C1 CHAR(8000)
)
CREATE TABLE CHECK1_T2
(
ID INT,
C1 CHAR(8000)
)
DECLARE @I INT
SET @I=1
WHILE @I<=10000
BEGIN
INSERT INTO CHECK1_T1 SELECT @I,'C1'
INSERT INTO CHECK1_T2 SELECT 10000+@I,'C1'
SET @I=@I+1
END
CREATE TABLE CHECK2_T1
(
ID INT,
C1 CHAR(8000)
)
DECLARE @I INT
SET @I=1
WHILE @I<=10000
BEGIN
INSERT INTO CHECK2_T1 SELECT @I,'C1'
SET @I=@I+1
END
INSERT INTO CHECK2_T1 VALUES(10001,'C2')
INSERT INTO CHECK2_T1 VALUES(10002,'C1')
CREATE TABLE CHECK3_T1
(
ID INT,
C1 CHAR(7000)
)
CREATE TABLE CHECK3_T2
(
ID INT,
C1 CHAR(7000)
)
DECLARE @I INT
SET @I=1
WHILE @I<=20000
BEGIN
IF @I%2 =0
BEGIN
INSERT INTO CHECK3_T1 SELECT @I,'C1'
END
ELSE
BEGIN
INSERT INTO CHECK3_T1 SELECT @I,'C2'
END
IF @I%100=0
BEGIN
INSERT INTO CHECK3_T2 SELECT @I,'C1'
INSERT INTO CHECK3_T2 SELECT @I+50000,'C2'
END
SET @I=@I+1
END
CREATE TABLE CHECK4_T1
(
ID INT,
C1 CHAR(500),
)
DECLARE @I INT
SET @I=1
WHILE @I<=500000
BEGIN
IF @I%100000 =0
BEGIN
INSERT INTO CHECK4_T1 SELECT @I,'C2'
END
ELSE
BEGIN
INSERT INTO CHECK4_T1 SELECT @I,'C1'
END
SET @I=@I+1
END
CREATE NONCLUSTERED INDEX NCIX_C1 ON CHECK4_T1(C1)
CREATE TABLE CHECK5_T1
(
ID INT,
C1 CHAR(10),
)
DECLARE @I INT
SET @I=1
WHILE @I<=10000
BEGIN
INSERT INTO CHECK5_T1 SELECT @I,'C1'
IF @I%2=0
BEGIN
INSERT INTO CHECK5_T1 SELECT @I,'C1'
END
SET @I=@I+1
END
*/
--=====================================
--1、 Union all 代替 Union
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
--测试一:(26s) 执行计划:表扫描->排序->合并联接
SELECT ID,C1 FROM CHECK1_T1 --1W条数据
UNION
SELECT ID,C1 FROM CHECK1_T2 --1W条数据
--测试二: (4s) 执行计划:表扫描->表扫描串联
SELECT ID,C1 FROM CHECK1_T1 --1W条数据
UNION ALL
SELECT ID,C1 FROM CHECK1_T2 --1W条数据
--总结:测试一中的union 排序和去重合并是相当耗时的,如果不要此功能,大数据时最好加上ALL
--=====================================
--2、 Exists 代替 Count(*)
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
----测试一: (7s) 执行计划:表扫描-> 流聚合-> 计算矢量
DECLARE @COUNT INT
SELECT @COUNT=COUNT(*) FROM CHECK2_T1 WHERE C1='C1' --1W条数据
IF @COUNT>0
BEGIN
PRINT 'S'
END
----测试二: (0s) 执行计划:常量扫描/表扫描-> 嵌套循环-> 计算标量
IF EXISTS(SELECT 1 FROM CHECK2_T1 WHERE C1='C1') --1W条数据
BEGIN
PRINT 'S'
END
--总结:判断是否存在,用Exist即可,没必要用COUNT(*)将表的所有记录统计出来,扫描一次
--=====================================
--3、 IN(Select COL1 From Table)的代替方式
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
--测试一: (3s)执行计划:表扫描 -> 哈希匹配
SELECT ID,C1 FROM CHECK3_T2 --400行
WHERE ID IN (SELECT ID FROM CHECK3_T1 WHERE C1='C1') --2W行
--测试二:(1s)执行计划:表扫描-> 并行度 -> 位图 -> 排序 -> 合并联接 -> 并行度
SELECT A.ID,A.C1 FROM CHECK3_T2 A
INNER JOIN CHECK3_T1 B ON A.ID=B.ID WHERE B.C1='C1'
--测试三:(3s)执行计划:表扫描-> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T2 A
WHERE EXISTS (SELECT 1 FROM CHECK3_T1 B WHERE B.ID=A.ID AND B.C1='C1')
--总结:能用INNER JOIN 尽量用它,SQL SERVER在查询时会将关联表进行优化
--=====================================
--4、 Not Exists 代替 Not In
--测试一:(8s) 执行计划:表扫描-> 嵌套循环 -> 哈希匹配
SELECT ID,C1 FROM CHECK3_T1 --2W行
WHERE ID NOT IN (SELECT ID FROM CHECK3_T2 WHERE C1='C1') --400行
--测试二:(4s) 执行计划:表扫描-> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T1 A
WHERE NOT EXISTS (SELECT 1 FROM CHECK3_T2 B WHERE B.ID=A.ID AND B.C1='C1')
--总结:尽量不使用NOT IN ,因为会调用嵌套循环,建议使用NOT EXISTS代替NOT IN
--=====================================
--5、 避免在条件列上使用任何函数
DROP TABLE CHECK4_T1
CREATE NONCLUSTERED INDEX NCIX_C1 ON CHECK4_T1(C1) --加上非聚集索引
---测试一:(4s)执行计划: 索引扫描
SELECT * FROM CHECK4_T1 WHERE RTRIM(C1)='C2'
---测试二:(0s)执行计划: 索引查找
SELECT * FROM CHECK4_T1 WHERE C1='C2'
--总结:where条件里对索引字段使用了函数,会使索引查找变成索引扫描,从而查询效率大幅下降
--=====================================
--6、 用sp_executesql执行动态sql
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
CREATE PROC UP_CHECK5_T1 (
@ID INT
)
AS
SET NOCOUNT ON
DECLARE @count INT,
@sql NVARCHAR(4000)
SET @sql = 'SELECT @count=count(*) FROM CHECK5_T1 WHERE ID = @ID'
EXEC sp_executesql @sql,
N'@count INT OUTPUT, @ID int',
@count OUTPUT,
@ID
PRINT @count
CREATE PROC UP_CHECK5_T2 (
@ID INT
)
AS
SET NOCOUNT ON
DECLARE @sql NVARCHAR(4000)
SET @sql = 'DECLARE @count INT;SELECT @count=count(*) FROM CHECK5_T1 WHERE ID = ' + CAST(@ID AS VARCHAR(10)) + ';PRINT @count'
EXEC(@sql)
---测试一:瞬时
DECLARE @N INT
SET @N=1
WHILE @N<=1000
BEGIN
EXEC UP_CHECK5_T1 @N
SET @N=@N+1
END
---测试二:2s
DECLARE @N INT
SET @N=1
WHILE @N<=1000
BEGIN
EXEC UP_CHECK5_T2 @N
SET @N=@N+1
END
CREATE CLUSTERED INDEX CIX_ID ON CHECK5_T1(ID)
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
--查看缓存计划
SELECT a.size_in_bytes '占用字节数',
total_elapsed_time / execution_count '平均时间',
total_logical_reads / execution_count '逻辑读',
usecounts '重用次数',
SUBSTRING(d.text, (statement_start_offset / 2) + 1, ((CASE statement_end_offset
WHEN -1 THEN DATALENGTH(text)
ELSE statement_end_offset
END - statement_start_offset) / 2) + 1) '语句'
FROM sys.dm_exec_cached_plans a
CROSS apply sys.dm_exec_query_plan(a.plan_handle) c,
sys.dm_exec_query_stats b
CROSS apply sys.dm_exec_sql_text(b.sql_handle) d
WHERE a.plan_handle = b.plan_handle
ORDER BY total_elapsed_time / execution_count DESC;
--总结:通过执行下面缓存计划可以看出,第一种完全使用了缓存计划,查询达到了很好的效果;
--而第二种则将缓存计划浪费了,导致缓存很快被占满,这种做法是相当不可取的
--=====================================
--7、 Left Join 的替代法
--测试一 执行计划:表扫描 -> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T1 A --2W行
LEFT JOIN CHECK3_T2 B ON A.ID=B.ID WHERE B.C1='C1' --400行
--测试二 执行计划:表扫描 -> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T1 A
RIGHT JOIN CHECK3_T2 B ON A.ID=B.ID WHERE a.C1='C1'
--测试三 执行计划:表扫描 -> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T1 A
INNER JOIN CHECK3_T2 B ON A.ID=B.ID WHERE B.C1='C1'
--总结:三条语句,在执行计划上完全一样,都是走的INNER JOIN的计划,
--因为测试一和测试二中,WHERE语句都包含了LEFT 和RIGHT表的字段,SQLSERVER若发现只要有这个表的字段,则会自动按照INNER JOIN进行处理
--补充测试:(1s)执行计划:表扫描-> 并行度 -> 位图 -> 排序 -> 合并联接 -> 并行度
SELECT A.ID,A.C1 FROM CHECK3_T2 A --400行
INNER JOIN CHECK3_T1 B ON A.ID=B.ID WHERE A.C1='C1' --2W行
--总结:这里有一个比较有趣的地方,若主表和关联表数据差别很大时,走的执行计划走的另一条路
--=====================================
--8、 ON(a.id=b.id AND a.tag=3)
--测试一
SELECT A.ID,A.C1 FROM CHECK3_T1 A
INNER JOIN CHECK3_T2 B ON A.ID=B.ID AND A.C1='C1'
--测试二
SELECT A.ID,A.C1 FROM CHECK3_T1 A
INNER JOIN CHECK3_T2 B ON A.ID=B.ID WHERE A.C1='C1'
--总结:内连接:无论是左表和右表的筛选条件都可以放到WHERE子句中
--测试一
SELECT A.ID,A.C1,B.C1 FROM CHECK3_T1 A
LEFT JOIN CHECK3_T2 B ON A.ID=B.ID AND B.C1='C1'
--测试二
SELECT A.ID,A.C1,B.C1 FROM CHECK3_T1 A
LEFT JOIN CHECK3_T2 B ON A.ID=B.ID WHERE B.C1='C1'
--总结:左外连接:当右表中的过滤条件放入ON子句后和WHERE子句后的结果不一样
--=====================================
--9、 赋值给变量,加Top 1
--测试一:(3s) 执行计划:表扫描
DECLARE @ID INT
SELECT @ID=ID FROM CHECK1_T1 WHERE C1='C1'
SELECT @ID
--测试二:(0s)执行计划:表扫描-> 前几行
DECLARE @ID INT
SELECT TOP 1 @ID=ID FROM CHECK1_T1 WHERE C1='C1'
SELECT @ID
--总结:给变量赋值最好都加上TOP 1,一从查询效率上增强,二为了准确性,若表CHECK1_T1有多个值,则会取最后一条记录赋给@ID
--=====================================
--10、 考虑是否适合用CASE语句
DECLARE @S INT=1
SELECT * FROM CHECK5_T1
WHERE C1=(CASE @S WHEN 1 THEN C1 ELSE 'C2' END)
SELECT * FROM CHECK5_T1
WHERE @S=1 OR C1='C2'
/*--=====================================
、检查语句是否需要Distinct. 执行计划:表扫描-> 哈希匹配-> 并行度-> 排序
select distinct c1 from CHECK3_T1
、禁用Select *,指定具体列名
select c1 from CHECK4_T1
select * from CHECK4_T1
、Insert into Table(*),指定具体的列名
、Isnull,没有必要的时候不要对字段使用isnull,同样会产生无法有效利用索引的问题,
和避免在筛选列上使用函数同样的原理。
、嵌套子查询,加上查询条件,确保子查询的结果集最小
--=====================================*/
/*
--注意:准备数据(可略过,非常耗时)
CREATE TABLE CHECK1_T1
(
ID INT,
C1 CHAR(8000)
)
CREATE TABLE CHECK1_T2
(
ID INT,
C1 CHAR(8000)
)
DECLARE @I INT
SET @I=1
WHILE @I<=10000
BEGIN
INSERT INTO CHECK1_T1 SELECT @I,'C1'
INSERT INTO CHECK1_T2 SELECT 10000+@I,'C1'
SET @I=@I+1
END
CREATE TABLE CHECK2_T1
(
ID INT,
C1 CHAR(8000)
)
DECLARE @I INT
SET @I=1
WHILE @I<=10000
BEGIN
INSERT INTO CHECK2_T1 SELECT @I,'C1'
SET @I=@I+1
END
INSERT INTO CHECK2_T1 VALUES(10001,'C2')
INSERT INTO CHECK2_T1 VALUES(10002,'C1')
CREATE TABLE CHECK3_T1
(
ID INT,
C1 CHAR(7000)
)
CREATE TABLE CHECK3_T2
(
ID INT,
C1 CHAR(7000)
)
DECLARE @I INT
SET @I=1
WHILE @I<=20000
BEGIN
IF @I%2 =0
BEGIN
INSERT INTO CHECK3_T1 SELECT @I,'C1'
END
ELSE
BEGIN
INSERT INTO CHECK3_T1 SELECT @I,'C2'
END
IF @I%100=0
BEGIN
INSERT INTO CHECK3_T2 SELECT @I,'C1'
INSERT INTO CHECK3_T2 SELECT @I+50000,'C2'
END
SET @I=@I+1
END
CREATE TABLE CHECK4_T1
(
ID INT,
C1 CHAR(500),
)
DECLARE @I INT
SET @I=1
WHILE @I<=500000
BEGIN
IF @I%100000 =0
BEGIN
INSERT INTO CHECK4_T1 SELECT @I,'C2'
END
ELSE
BEGIN
INSERT INTO CHECK4_T1 SELECT @I,'C1'
END
SET @I=@I+1
END
CREATE NONCLUSTERED INDEX NCIX_C1 ON CHECK4_T1(C1)
CREATE TABLE CHECK5_T1
(
ID INT,
C1 CHAR(10),
)
DECLARE @I INT
SET @I=1
WHILE @I<=10000
BEGIN
INSERT INTO CHECK5_T1 SELECT @I,'C1'
IF @I%2=0
BEGIN
INSERT INTO CHECK5_T1 SELECT @I,'C1'
END
SET @I=@I+1
END
*/
--=====================================
--1、 Union all 代替 Union
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
--测试一:(26s) 执行计划:表扫描->排序->合并联接
SELECT ID,C1 FROM CHECK1_T1 --1W条数据
UNION
SELECT ID,C1 FROM CHECK1_T2 --1W条数据
--测试二: (4s) 执行计划:表扫描->表扫描串联
SELECT ID,C1 FROM CHECK1_T1 --1W条数据
UNION ALL
SELECT ID,C1 FROM CHECK1_T2 --1W条数据
--总结:测试一中的union 排序和去重合并是相当耗时的,如果不要此功能,大数据时最好加上ALL
--=====================================
--2、 Exists 代替 Count(*)
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
----测试一: (7s) 执行计划:表扫描-> 流聚合-> 计算矢量
DECLARE @COUNT INT
SELECT @COUNT=COUNT(*) FROM CHECK2_T1 WHERE C1='C1' --1W条数据
IF @COUNT>0
BEGIN
PRINT 'S'
END
----测试二: (0s) 执行计划:常量扫描/表扫描-> 嵌套循环-> 计算标量
IF EXISTS(SELECT 1 FROM CHECK2_T1 WHERE C1='C1') --1W条数据
BEGIN
PRINT 'S'
END
--总结:判断是否存在,用Exist即可,没必要用COUNT(*)将表的所有记录统计出来,扫描一次
--=====================================
--3、 IN(Select COL1 From Table)的代替方式
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
--测试一: (3s)执行计划:表扫描 -> 哈希匹配
SELECT ID,C1 FROM CHECK3_T2 --400行
WHERE ID IN (SELECT ID FROM CHECK3_T1 WHERE C1='C1') --2W行
--测试二:(1s)执行计划:表扫描-> 并行度 -> 位图 -> 排序 -> 合并联接 -> 并行度
SELECT A.ID,A.C1 FROM CHECK3_T2 A
INNER JOIN CHECK3_T1 B ON A.ID=B.ID WHERE B.C1='C1'
--测试三:(3s)执行计划:表扫描-> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T2 A
WHERE EXISTS (SELECT 1 FROM CHECK3_T1 B WHERE B.ID=A.ID AND B.C1='C1')
--总结:能用INNER JOIN 尽量用它,SQL SERVER在查询时会将关联表进行优化
--=====================================
--4、 Not Exists 代替 Not In
--测试一:(8s) 执行计划:表扫描-> 嵌套循环 -> 哈希匹配
SELECT ID,C1 FROM CHECK3_T1 --2W行
WHERE ID NOT IN (SELECT ID FROM CHECK3_T2 WHERE C1='C1') --400行
--测试二:(4s) 执行计划:表扫描-> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T1 A
WHERE NOT EXISTS (SELECT 1 FROM CHECK3_T2 B WHERE B.ID=A.ID AND B.C1='C1')
--总结:尽量不使用NOT IN ,因为会调用嵌套循环,建议使用NOT EXISTS代替NOT IN
--=====================================
--5、 避免在条件列上使用任何函数
DROP TABLE CHECK4_T1
CREATE NONCLUSTERED INDEX NCIX_C1 ON CHECK4_T1(C1) --加上非聚集索引
---测试一:(4s)执行计划: 索引扫描
SELECT * FROM CHECK4_T1 WHERE RTRIM(C1)='C2'
---测试二:(0s)执行计划: 索引查找
SELECT * FROM CHECK4_T1 WHERE C1='C2'
--总结:where条件里对索引字段使用了函数,会使索引查找变成索引扫描,从而查询效率大幅下降
--=====================================
--6、 用sp_executesql执行动态sql
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
CREATE PROC UP_CHECK5_T1 (
@ID INT
)
AS
SET NOCOUNT ON
DECLARE @count INT,
@sql NVARCHAR(4000)
SET @sql = 'SELECT @count=count(*) FROM CHECK5_T1 WHERE ID = @ID'
EXEC sp_executesql @sql,
N'@count INT OUTPUT, @ID int',
@count OUTPUT,
@ID
PRINT @count
CREATE PROC UP_CHECK5_T2 (
@ID INT
)
AS
SET NOCOUNT ON
DECLARE @sql NVARCHAR(4000)
SET @sql = 'DECLARE @count INT;SELECT @count=count(*) FROM CHECK5_T1 WHERE ID = ' + CAST(@ID AS VARCHAR(10)) + ';PRINT @count'
EXEC(@sql)
---测试一:瞬时
DECLARE @N INT
SET @N=1
WHILE @N<=1000
BEGIN
EXEC UP_CHECK5_T1 @N
SET @N=@N+1
END
---测试二:2s
DECLARE @N INT
SET @N=1
WHILE @N<=1000
BEGIN
EXEC UP_CHECK5_T2 @N
SET @N=@N+1
END
CREATE CLUSTERED INDEX CIX_ID ON CHECK5_T1(ID)
DBCC DROPCLEANBUFFERS
DBCC FREEPROCCACHE
--查看缓存计划
SELECT a.size_in_bytes '占用字节数',
total_elapsed_time / execution_count '平均时间',
total_logical_reads / execution_count '逻辑读',
usecounts '重用次数',
SUBSTRING(d.text, (statement_start_offset / 2) + 1, ((CASE statement_end_offset
WHEN -1 THEN DATALENGTH(text)
ELSE statement_end_offset
END - statement_start_offset) / 2) + 1) '语句'
FROM sys.dm_exec_cached_plans a
CROSS apply sys.dm_exec_query_plan(a.plan_handle) c,
sys.dm_exec_query_stats b
CROSS apply sys.dm_exec_sql_text(b.sql_handle) d
WHERE a.plan_handle = b.plan_handle
ORDER BY total_elapsed_time / execution_count DESC;
--总结:通过执行下面缓存计划可以看出,第一种完全使用了缓存计划,查询达到了很好的效果;
--而第二种则将缓存计划浪费了,导致缓存很快被占满,这种做法是相当不可取的
--=====================================
--7、 Left Join 的替代法
--测试一 执行计划:表扫描 -> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T1 A --2W行
LEFT JOIN CHECK3_T2 B ON A.ID=B.ID WHERE B.C1='C1' --400行
--测试二 执行计划:表扫描 -> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T1 A
RIGHT JOIN CHECK3_T2 B ON A.ID=B.ID WHERE a.C1='C1'
--测试三 执行计划:表扫描 -> 哈希匹配
SELECT A.ID,A.C1 FROM CHECK3_T1 A
INNER JOIN CHECK3_T2 B ON A.ID=B.ID WHERE B.C1='C1'
--总结:三条语句,在执行计划上完全一样,都是走的INNER JOIN的计划,
--因为测试一和测试二中,WHERE语句都包含了LEFT 和RIGHT表的字段,SQLSERVER若发现只要有这个表的字段,则会自动按照INNER JOIN进行处理
--补充测试:(1s)执行计划:表扫描-> 并行度 -> 位图 -> 排序 -> 合并联接 -> 并行度
SELECT A.ID,A.C1 FROM CHECK3_T2 A --400行
INNER JOIN CHECK3_T1 B ON A.ID=B.ID WHERE A.C1='C1' --2W行
--总结:这里有一个比较有趣的地方,若主表和关联表数据差别很大时,走的执行计划走的另一条路
--=====================================
--8、 ON(a.id=b.id AND a.tag=3)
--测试一
SELECT A.ID,A.C1 FROM CHECK3_T1 A
INNER JOIN CHECK3_T2 B ON A.ID=B.ID AND A.C1='C1'
--测试二
SELECT A.ID,A.C1 FROM CHECK3_T1 A
INNER JOIN CHECK3_T2 B ON A.ID=B.ID WHERE A.C1='C1'
--总结:内连接:无论是左表和右表的筛选条件都可以放到WHERE子句中
--测试一
SELECT A.ID,A.C1,B.C1 FROM CHECK3_T1 A
LEFT JOIN CHECK3_T2 B ON A.ID=B.ID AND B.C1='C1'
--测试二
SELECT A.ID,A.C1,B.C1 FROM CHECK3_T1 A
LEFT JOIN CHECK3_T2 B ON A.ID=B.ID WHERE B.C1='C1'
--总结:左外连接:当右表中的过滤条件放入ON子句后和WHERE子句后的结果不一样
--=====================================
--9、 赋值给变量,加Top 1
--测试一:(3s) 执行计划:表扫描
DECLARE @ID INT
SELECT @ID=ID FROM CHECK1_T1 WHERE C1='C1'
SELECT @ID
--测试二:(0s)执行计划:表扫描-> 前几行
DECLARE @ID INT
SELECT TOP 1 @ID=ID FROM CHECK1_T1 WHERE C1='C1'
SELECT @ID
--总结:给变量赋值最好都加上TOP 1,一从查询效率上增强,二为了准确性,若表CHECK1_T1有多个值,则会取最后一条记录赋给@ID
--=====================================
--10、 考虑是否适合用CASE语句
DECLARE @S INT=1
SELECT * FROM CHECK5_T1
WHERE C1=(CASE @S WHEN 1 THEN C1 ELSE 'C2' END)
SELECT * FROM CHECK5_T1
WHERE @S=1 OR C1='C2'
/*--=====================================
、检查语句是否需要Distinct. 执行计划:表扫描-> 哈希匹配-> 并行度-> 排序
select distinct c1 from CHECK3_T1
、禁用Select *,指定具体列名
select c1 from CHECK4_T1
select * from CHECK4_T1
、Insert into Table(*),指定具体的列名
、Isnull,没有必要的时候不要对字段使用isnull,同样会产生无法有效利用索引的问题,
和避免在筛选列上使用函数同样的原理。
、嵌套子查询,加上查询条件,确保子查询的结果集最小
--=====================================*/
标签:
Checklist
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无编写SQL需要注意的细节Checklist总结的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。