南强小屋 Design By 杰米

在做开发的朋友特别是和mysql有接触的朋友会碰到有时mysql查询很慢,当然我指的是大数据量百万千万级了,不是几十条了,

下面我们来看看解决查询慢的办法

会经常发现开发人员查一下没用索引的语句或者没有limit n的语句,这些没语句会对数据库造成很大的影响,例如一个几千万条记录的大表要全部扫描,或者是不停的做filesort,对数据库和服务器造成io影响等。这是镜像库上面的情况。

而到了线上库,除了出现没有索引的语句,没有用limit的语句,还多了一个情况,mysql连接数过多的问题。说到这里,先来看看以前我们的监控做法 :

  1. 部署zabbix等开源分布式监控系统,获取每天的数据库的io,cpu,连接数
  2. 部署每周性能统计,包含数据增加量,iostat,vmstat,datasize的情况
  3. Mysql slowlog收集,列出top 10

以前以为做了这些监控已经是很完美了,现在部署了mysql节点进程监控之后,才发现很多弊端

  • 第一种做法的弊端: zabbix太庞大,而且不是在mysql内部做的监控,很多数据不是非常准备,现在一般都是用来查阅历史的数据情况
  • 第二种做法的弊端:因为是每周只跑一次,很多情况没法发现和报警
  • 第三种做法的弊端: 当节点的slowlog非常多的时候,top10就变得没意义了,而且很多时候会给出那些是一定要跑的定期任务语句给你。。参考的价值不大

那么我们怎么来解决和查询这些问题呢

对于排查问题找出性能瓶颈来说,最容易发现并解决的问题就是MYSQL的慢查询以及没有得用索引的查询。
OK,开始找出mysql中执行起来不“爽”的SQL语句吧。

方法一: 这个方法我正在用,呵呵,比较喜欢这种即时性的。

Mysql5.0以上的版本可以支持将执行比较慢的SQL语句记录下来。

mysql> show variables like 'long%'; 注:这个long_query_time是用来定义慢于多少秒的才算“慢查询”
+-----------------+-----------+
| Variable_name | Value |
+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+
1 row in set (0.00 sec)
mysql> set long_query_time=1; 注: 我设置了1, 也就是执行时间超过1秒的都算慢查询。
Query OK, 0 rows affected (0.00 sec)
mysql> show variables like 'slow%';
+---------------------+---------------+
| Variable_name | Value |
+---------------------+---------------+
| slow_launch_time | 2 |
| slow_query_log | ON | 注:是否打开日志记录

| slow_query_log_file | /tmp/slow.log | 注: 设置到什么位置
+---------------------+---------------+
3 rows in set (0.00 sec)
mysql> set global slow_query_log='ON' 注:打开日志记录

一旦slow_query_log变量被设置为ON,mysql会立即开始记录。
/etc/my.cnf 里面可以设置上面MYSQL全局变量的初始值。
long_query_time=1
slow_query_log_file=/tmp/slow.log

方法二:mysqldumpslow命令

/path/mysqldumpslow -s c -t 10 /tmp/slow-log
这会输出记录次数最多的10条SQL语句,其中:
-s, 是表示按照何种方式排序,ctlr分别是按照记录次数、时间、查询时间、返回的记录数来排序,acatalar,表示相应的倒叙;
-t, 是top n的意思,即为返回前面多少条的数据;
-g, 后边可以写一个正则匹配模式,大小写不敏感的;
比如
/path/mysqldumpslow -s r -t 10 /tmp/slow-log
得到返回记录集最多的10个查询。
/path/mysqldumpslow -s t -t 10 -g “left join” /tmp/slow-log
得到按照时间排序的前10条里面含有左连接的查询语句。 最后总结一下节点监控的好处

  1. 轻量级的监控,而且是实时的,还可以根据实际的情况来定制和修改
  2. 设置了过滤程序,可以对那些一定要跑的语句进行过滤
  3. 及时发现那些没有用索引,或者是不合法的查询,虽然这很耗时去处理那些慢语句,但这样可以避免数据库挂掉,还是值得的
  4. 在数据库出现连接数过多的时候,程序会自动保存当前数据库的processlist,DBA进行原因查找的时候这可是利器
  5. 使用mysqlbinlog 来分析的时候,可以得到明确的数据库状态异常的时间段

有些人会建义我们来做mysql配置文件设置

调节tmp_table_size的时候发现另外一些参数
Qcache_queries_in_cache在缓存中已注册的查询数目
Qcache_inserts被加入到缓存中的查询数目
Qcache_hits缓存采样数数目
Qcache_lowmem_prunes因为缺少内存而被从缓存中删除的查询数目
Qcache_not_cached没有被缓存的查询数目 (不能被缓存的,或由于 QUERY_CACHE_TYPE)
Qcache_free_memory查询缓存的空闲内存总数
Qcache_free_blocks查询缓存中的空闲内存块的数目
Qcache_total_blocks查询缓存中的块的总数目
Qcache_free_memory可以缓存一些常用的查询,如果是常用的sql会被装载到内存。那样会增加数据库访问速度。

标签:
MySQL查询优化,MySQL查询慢原因

南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米

评论“MySQL查询优化之查询慢原因和解决技巧”

暂无MySQL查询优化之查询慢原因和解决技巧的评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。