南强小屋 Design By 杰米
本文实例为大家分享了Python实现简单层次聚类算法,以及可视化,供大家参考,具体内容如下
基本的算法思路就是:把当前组间距离最小的两组合并成一组。
算法的差异在算法如何确定组件的距离,一般有最大距离,最小距离,平均距离,马氏距离等等。
代码如下:
import numpy as np import data_helper np.random.seed(1) def get_raw_data(n): _data=np.random.rand(n,2) #生成数据的格式是n个(x,y) _groups={idx:[[x,y]] for idx,(x,y) in enumerate(_data)} return _groups def cal_distance(cluster1,cluster2): #采用最小距离作为聚类标准 _min_distance=10000 for x1,y1 in cluster1: for x2,y2 in cluster2: _distance=(x1-x2)**2+(y1-y2)**2 if _distance<_min_distance: _min_distance=_distance return _distance groups=get_raw_data(10) count=0 while len(groups)!=1:#判断是不是所有的数据是不是归为了同一类 min_distance=10000 len_groups=len(groups) for i in groups.keys(): for j in groups.keys(): if i>=j: continue distance=cal_distance(groups[i],groups[j]) if distance<min_distance: min_distance=distance min_i=i min_j=j#这里的j>i groups[min_i].extend(groups.pop(min_j)) data_helper.draw_data(groups) #一共n个簇,共迭代n-1次
运行的效果就是迭代一次,组数就会少一次,调用画图方法,同一组的数据被显示为一个颜色。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,层次聚类算法
南强小屋 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
南强小屋 Design By 杰米
暂无Python实现简单层次聚类算法以及可视化的评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。